摘要:金属纳米晶体催化剂由于其独特的电子性质,在电化学能源转化反应中表现出优异的催化性能。为了提升催化剂的活性和耐久性,需要精确调控其晶体结构和形貌。然而,传统的制备方法往往需要严苛的条件,如高温、高压和特定的有机物,以控制晶体的生成和生长过程。这限制了能够合成的金属基催化剂的种类,并导致清洗复杂和有机物残留的问题。电化学方法通过电化学响应获取体系过程信息,并可以通过调控参数来调节晶体的生长。特别
摘要:随着消费类电子产品和新能源汽车产业的迅速发展,传统的锂离子电池已经不能满足日益增长的能源需求。为了应对这一挑战,许多高比能电池被提出和研发。其中,锂氧电池以其超高的能量密度引起了广泛的关注,但其可逆性较差问题严重限制了锂氧电池的进一步发展。在锂氧电池中,电解液是一个重要的组成部分,其组分和配比对电池的放电容量、倍率性能和负极稳定性等方面具有至关重要的影响。本文以电解液的组分为线索,对锂氧电池
摘要:采用无机固体电解质的全固态锂电池以其高安全性和长寿命等优点,已经成为动力电池领域的重要发展方向之一。随着高室温离子电导率(大于10−3 S·cm−1)的固体电解质的涌现,锂离子在其中的迁移动力学问题不再是全固态锂电池发展的主要瓶颈。相比之下,正极和固体电解质界面处因空间电荷层等复杂效应导致的高界面电阻成为当前急需解决的难题。本文从(电)化学势及电势的基本概念出发,对描述正极和固体电解质之间化
摘要:目前对高性能与高稳定性的电催化剂进行精准合成仍然是亟待解决的问题。熵作为是最重要的热力学参数之一,是描述体系无序程度的物理量,其数值主要由材料的结构、磁矩、原子和电子振动共同决定。根据体系的构型熵值,我们通常将材料分为低熵材料(ΔSmix < 1R)、中熵材料(1R ≤ ΔSmix ≥ 1.5R)和高熵材料(ΔSmix > 1.5R)。随着熵值的增加,材料本征的物理与化学性质也会
摘要:亲核氧化反应在可持续生产增值化学品中扮演着重要角色。电催化甘油氧化反应作为亲核氧化反应的一种重要类型,可以制得包括甲酸在内的C1至C3衍生产物。非贵金属氢氧化物/羟基氧化物被广泛应用于甘油氧化反应,但在中等电位下难以达到工业级电流密度(大于300 mAꞏcm−2)。研究表明,氢氧化物/羟基氧化物催化的甘油氧化反应通过间接氧化机理进行, 即通过电生成的含有亲电吸附氧的羟基氧化物氧化亲核试剂(甘
摘要:金属有机骨架(MOFs)作为一种高效的电催化剂,在光电化学中具有广阔的应用前景。在此,我们开发了一种将金属有机框架作为析氧助催化剂(OEC)与半导体相结合的策略,以改善电荷传输并减少体/表面载流子复合。制备的CoFeMOF/BiVO4光阳极在AM 1.5G照明下,1.23 V (vs. RHE)下表现出4.5 mAꞏcm−2的光电流密度,实现了卓越的长期光稳定性。值得注意的是,随着MOF在长
摘要:Cr(VI)污染物有毒有害且不可生物降解,会对环境造成严重破坏。光催化技术可实现Cr(VI)的有效去除,在解决环境污染问题方面具有良好前景。因此,本文通过在富含氧空位(OV)的BiOCl微球表面原位生长MIL-101(Fe)晶体,构建了一种新型富氧缺陷MOF基S型异质结催化剂-MIL-101(Fe)/BiOCl。这种催化剂在高浓度Cr(VI)的光催化还原中表现出优异活性,60 min内对Cr
摘要:煤炭、石油和天然气等能源的不断增长消耗,不仅导致不可再生能源逐渐枯竭,还使大气中的CO2浓度显著上升,引发严重的能源危机和气候问题。因此,我们必须开发清洁、可持续的能源转换技术,以应对不断增长的能源需求和日益严重的环境危机。受到自然界光合作用的启发,光催化CO2转化利用太阳能驱动,可以将CO2和水转化为高附加值的化学品。经过多年的发展,人工光合作用已被认为是一种绿色、经济、可持续的方法,有望
摘要:在CO2加氢领域,MoS2催化剂表现出独特的潜力。然而MoS2的边缘S空位对CH4的生成更有利,这限制了目标产物甲醇的选择性。本工作中,我们发现,通过掺杂K助剂可以显著提高MoS2催化CO2选择性加氢制甲醇的性能,而未修饰的MoS2主要产生CH4。通过一系列的表征研究,我们发现,K原子更倾向于稳定在MoS2的边缘位点上,并向MoS2转移电子,从而增强了MoS2边缘位点的碱性。这有助于CO2的
摘要:近年来基于益生菌的幽门螺旋杆菌感染治疗策略受到了越来越多的关注,然而益生菌在胃部中直接递送会受到胃酸环境的干扰,难以存活,无法有效抑制幽门螺旋杆菌。为了实现益生菌在胃部的高效递送,我们制备了具有核壳结构的益生菌胶囊。胶囊外壳由海藻酸钙(Alg)、碳酸钙(CaCO3)以及铁钴磁性石墨纳米囊FeCo@G组成,胶囊内核为益生菌(约氏乳杆菌,Laj)菌液。其中,CaCO3用于局域中和胃酸以保护内核益